

Co-ordinates can use positive and negative numbers. Whether positive or negative, the x-axis co-ordinate is written first, followed by the y-axis co-oxdinate.

$$
y \text {-axis }
$$

Look at the circle. It is 3 units along the x-axis and 4 down the y-axis. Its co-ordinates are $(3,-4)$.

Using the properties of a shape, a polygon can be completed on a grid.

To make a square, think of a square's properties.

All of a square's sides are the same length. If the completed sides are 2 units in length, the missing point must complete two more sides of 2 units.

To make a right-angled triangle, think of the triangle's properties.

A right-angled triangle should have three sides with one 90° angle.

A shape is translated when it is moved without being rotated or resized. Every point of the shape mones the same distance and in the same direction.

Shape I has been translated 4 units left and 3 units down.

A shape is reflected when it is flipped over a line which acts as a mirror. Every point on the oxiginal shape is the same distance from the mirror line as the same point on the reflected shape. The oxiginal triangle has been reflected in the x-axis and in the y-axis.

Missing co-
ordinates
Shapes can be shown on unmarked grids.

Point a is in the same position along the x-axis as $(5,2)$ and in the same position on the y-axis as $(7,9)$. Point $a(5,9)$

Point b is in the same position on the y-axis as $(10,4)$. Both triangles will have the same width. the width of the right-hand triangle is 3 . This means that the width of the left-hand triangle is also 3. Point b $(2,4)$

